Kernels



Main points about the Kernel

Main points
m high-dimensional spaces help to separate the data
m project data in high dimensional space: x — ¢(x)
m Kernel (by definition) models dot products in the high-dimensional space
k(x,x') = $(x) p(x)
m often, we don't know the projection ¢, but we just need to use the dot product which is
given by the kernel
So what do kernels represent?
m how similar the points are, but the notion of similarity may not always match our
intuition (cf polynomial kernels)
m classification view point: points which are 'close’ (according to the kernel)
should share the same label
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Higher-Dimensional Feature Spaces
2D Synthetic Dataset -Scenario 2-

m Non-linearly separable.
m Five clusters.

m 100 samples per class
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Higher-Dimensional Feature Spaces

Exercise 1: Adding features

23:x12+x22

Note that z3 is the distance to the center point xc = [0,0] (purple class)
(3= (1 = 0)> + (2 = 0)?)



Higher-Dimensional Feature Spaces

Exercise 1: Adding features

Note also that indeed, using only z3 both classes can be linearly separated (eg. setting
a threshold around 0.1)
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Higher-Dimensional Feature Spaces

Exercise 1: Adding features

In this view, any other monotonic function of z3 could be used to make the class

separable, like for instance r? below.
Scenario 2

-06 -04 -02 00 02 04
x1

23 = (x1 — 0)% + (x2 — 0)?
r=vz

rihresh = V0.1 = 0.31 is a threshold which could separate the two classes.



Higher-Dimensional Feature Spaces

Exercise 1: Adding features

In this view, any other monotonic function of z3 could be used to make the class
separable, like for instance r? below.
Scenario 2

-06 -04 -02 00 02 04

x1
23 = (x1 — 0)? + (x2 — 0)?

r=./z3

rihresh = V0.1 = 0.31 is a threshold which could separate the two classes.

Also z3 = x2 could do as well (or the absolute value)



Higher-Dimensional Feature Spaces

Exercise 1: Adding features

Same data with offset ?

Lo Scenario 2 with offset
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Use as feature: z3 the distance to the point xc = [1,1] (purple class)
(z3=(a -1+ (- 1))



Kernels

Exercise 3: Kernel trick - Polynomial kernel
¢poly(x) = [X12a \/§X1X27X22]

Applied to synthetic scenario 2:
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Kernels trick -

Exercice 5 : comparison

k(xa,x5) = (xa - x5+ ¢)P and k(xa, xb) = (xa - X )2 = G poly (Xa)-Ppoly (X)

Q2: Thinking about the computational cost, and the generalization to higher order
polynomials, explain which implementation is more recommended and why.

m when the order of the polynomial is high, the explicit projection needs to generate
many features, before doing the dot product. In contrast, in the kernel case, the
dot product is conducted in low dimension, and only one exponential is needed,
so the kernal case will require less computations.

m if exploited in SVMs, the explicit projection might be better, as it will allow to
explicitly define the classifier as a linear classifier (i.e. with weights, which have
some potential interpretation), so that computing the score for a new point will
involve: projection + applying the linear classifier. Otherwise, the new score will
be computed as a sum over the support vectors of kernel products, and the
number of support vectors can be quite high.

m Note: in any case, both methods provide the same results.



Kernels

arity map

k(xa, xp) = exp(=7llxa — xb||?)
In the above, v > 0 corresponds to the term 1/252 of the typical Gaussian function. It
is thus inversely proportional to the variance.

g=1 g=3

Similarity Map Similarity Map

g=5

Similarity Map

Similarity Ma Similarity May

g=10 9=20 g=50

Impact of v: from a classification point of view (e.g. with an SVM), when ~ is high,

this means that a datapoint with a given label will influence the classification of only
nearby points, and not much points which are further away.




Kernels
Polynomial kernel similarity map: k(xa, x5) = (xa - x] + c)?

Solution: p 3

Similarity Map. Similarity Ma

Similar points are note necessarily “nearby” points. Rather, what is captured is a similarity in the
direction. Points which are in the same direction (or in the opposite direction as well for
polynomial kernels of order 2,4,...) are more similar.

[0.5,0,5]

Similarity Map

xa &
[-0.5,0,5]

e

Note: this is similar with linear classifiers: points on line parallel to the decision line receive the
same score




Comments

= Question 2 of exercise 7 is difficult.
m The last question of the lab is a bit unclear for me. I'm still not sure | really
understood the question.

m The kernel map usage is not really clear. What use is there to know when the
values are higher or lower? so this part of the lab is still not clear

The point of this exercise is to get an intuitive understanding of the kernel as a
measure of similarity between vectors. But how do we define similarity? Is it the
distance between vectors? The angle between them? Or something else?

We choose the appropriate kernel for our task based on how we expect to measure the
similarity between vectors (considering what these vectors represent).
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Comments -

Comment

I would like to know how the function Phi (¢) which transforms the data in the new
space is computed. For example, in exercice 1, how do we find phi function?

Well, we may decide on Phi (¢)
® by intuition
® in a systematic fashion (cf polynomial kernels: features = all potential products
fol...x,,,(” with >~ kj = p)
m even in random ways: cf. random projection classifiers.

® but in our context: it is not defined - what is defined instead is the kernel (that
we may select according to our need)



Support Vector Machines (SVM) - Part 1



SVM

Part 1

Some elements about SVMs

m notion of margin - find the linear classifier which has the largest margin

Main idea: look at the margin !

e H1: does not separate the classes
e H2: separate classes, but by a small margin
e H3: maximum margin




SVM

Part 1

N
y(x) =wlp(x) +b= Zaiti¢(xi)T¢(X) +b= Z a;tik(x;,x) + b

i=1 i€ES

m sum over support vectors

m t; - label of the support vector

m a; overall importance of support vector in the decision

m k(xj, x) 'similarity’ - how much support vector x; influences the decision at point x

m kernel: implicit projection in a high dimensional space of the data point (cf figure)
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Linear SVM -
Exercise 1: Loading and visualize data

Do you think that the classes are linearly separable?

Dataset Samples X
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Yes, they are linearly separable, but whether we want that outlier to be classified
correctly at the expense of the decision surface is another question.



Linear SVM

Exercise 3: Plotting the decision boundary

Recall that when using a linear SVM, the decision boundary is a line, the parameters of which can
be derived from the optimized SVM model.

Q1: Provide the expression of the weights and bias of the boundary decision line as a function of
the support vectors, their class, and the weights (a;) learned during the SVM optimization.
Provide the expression for the margin as well.

Solution (course notations):

The general expression is given by (cf. course):
y(x) = Z aitik(xi, x) + b
i€S

Since in this case we use the linear kernel k(x;, x) = x; - x, we have:

y(x):Za;t,-x;~X+b= Za;t;x,- ‘X+b=w-x+b
ies i€s
with
-w= s aitixi - (and b= g 3ot — 3 es atix - xi) = w5 2ies(ti — wxi))

The margin is given by: margin = ﬁ



Linear SVM

Exercise 3: Plotting the decision boundary

Q1: Then compute the weights using this expression, and verify that they are the same than the
coefficients provided by the SVM class (svm.coef_).

Solution (using scikit-learn output):

Using scikit-learn, the components of the attribute dual_coef]0,:] already contain the label (i.e.
aj X t;), so to obtain the weight vector w can be computed as:

w = Z dual_coef[0,i] x;
i€S

This expression is computed in vectorial form in the next slide.



Linear SVM

Exercise 3: Plotting the decision boundary

Q2: Then compute the weights using this expression, and verify that they are the
same than the coefficients provided by the SVM class (svm.coef_).

s = svm.support_vectors_ # Support vectors.

w = svm.dual_coef_[0,:] # The weights for the support vectors
wf = svm.coef_ # Coefficients of linear regression.

b = svm.intercept_ # Bias.

print (Regression coefficient)
print (wf)

w=np.reshape(w, (1,s.shape[0]))
wformula = np.dot(w,s)

print (Regression coefficient computed from formula: )
print (wformula)

Regression coefficient [[1.40718563 2.13398052]]
Regression coefficient computed from formula: [[1.40718563 2.13398052]]



Linear SVM -Influence of parameter C

e Primal problem
w\|2+025\i1 £Z> subject to

arg miny <%|
tiy(xi) >1-§& Vi=1,...,N
§ >0

N
. 1 2
arg min (EHWH +C Z max(0,1 — t,y(xﬂ))

=1

m First term: measure the inverse of the margin
m Second term: count the margin violation

m & = 0: point x; well classified on good side
m 0 <& < 1: point well classified, but within the margin
m & > 1: point badly classified
Note:
m Optimization: compromise between the two

m C: when it is very very large, we don't tolerate margin violation/errors = recover the
separable case (when possible)



Linear SVM

Exercise 4: Influence of Parameter C

Run the code to learn the linear SVM classifier on the 2D dataset samples (X). In
particular, experiment with different values of the cost parameter

C € {1,10,20,100,200,300}. As C increases, see the evolution of the margin, the
number of support vectors, the accuracy.

Solution: C=1

Classification accuracy: 0.980
Num. support vectors: 12
Margin = 0.391

Dataset Samples

55

50

x2




Linear SVM

Exercise 4: Influence of Parameter C

Run the code to learn the linear SVM classifier on the 2D dataset samples (X). In
particular, experiment with different values of the cost parameter

C € {1,10,20,100,200,300}. As C increases, see the evolution of the margin, the
number of support vectors, the accuracy.

Solution: C=50

Classification accuracy: 1.000
Num. support vectors: 4
Margin = 0.100

Dataset Samples

Y

x2




Linear SVM

Exercise 4: Influence of Parameter C

Run the code to learn the linear SVM classifier on the 2D dataset samples (X). In
particular, experiment with different values of the cost parameter
C € {1,10,20,100,200,300}. As C increases, see the evolution of the margin, the

number of support vectors, the accuracy.

Solution: C=100

26/59

Classification accuracy: 1.000
Num. support vectors: 3
Margin = 0.072

Dataset Samples

a0




Linear SVM

Exercise 4: Influence of Parameter C

Run the code to learn the linear SVM classifier on the 2D dataset samples (X). In
particular, experiment with different values of the cost parameter
C € {1,10,20,100,200,300}. As C increases, see the evolution of the margin, the

number of support vectors, the accuracy.

Solution: C=300

27/59

Classification accuracy: 1.000
Num. support vectors: 3
Margin = 0.072

Dataset Samples

a0




Linear SVM

Exercise 4: Parameter C

Q2: Which difference do you observe in the learned hyperplanes and other elements (margin,
number of support vectors) for different values of C ? Given the interpretation of C is this
evolution normal? Explain.

S TP
arg min <EIIWI| + CZ@')

i=1

As C goes from 1 to 300, we observe that:

m the accuracy increases (the number of errors tends to decrease; normal w.r.t. interpretation
of C)

= the margin decreases (normal w.r.t. interpretation of C)

m the number of support vectors tends to decrease (ok with interpretation of C; indeed, more
and more points fall on the margin or beyond)




Linear SVM

Exercise 4: Parameter C
Q3: What do you observe for C values above 100? What can you say about the slack variables?

In that case, the accuracy is 100%, and the margin does not evolve. This means that all data
points are well classified and on the margin or beyond. So the slack variables are all 0. Hence the
solution is always exactly the same, as increasing C has no more impact on the function to
optimize.

Note: how to interpret that the margin is different for C = 50 and C = 100 although
the training accuracy is 100% in both cases?

For C = 50, there is a data point that is correctly classified but within the margin.

This means that its slack variable is strictly positive (between 0 and 1). So even if the
accuracy is already 100%, the decision function can still change if we increase C. This
will cause the slack variable of this point to be 0, and thus decrease the margin further.



Linear SVM - Spam/Non-Spam
Exercise 5: Learn and test SVMs

Using the e-mail spam dataset, learn a linear SVM classifier on the training set and
apply it on the test set. Repeat for different sizes of the training data: 50, 100, 400
and 702 samples.

Solution: 50 samples

Training with 50 samples

Email classification:

+ Num. train samples 50

+ Training classification accuracy: 1.000
+ Testing classification accuracy: 0.796
+ Num. support vectors: 33
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Linear SVM - Spam/Non-Spam
Exercise 5: Learn and test SVMs

Using the e-mail spam dataset, learn a linear SVM classifier on the training set and
apply it on the test set. Repeat for different sizes of the training data: 50, 100, 400
and 702 samples.

Solution: 100 samples

Training with 100 samples
Email classification:

+ Num. train samples 100

+ Training classification accuracy: 1.000
+ Testing classification accuracy: 0.962
+ Num. support vectors: 51
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Linear SVM - Spam/Non-Spam
Exercise 5: Learn and test SVMs

Using the e-mail spam dataset, learn a linear SVM classifier on the training set and
apply it on the test set. Repeat for different sizes of the training data: 50, 100, 400
and 702 samples.

Solution: 400 samples

Training with 400 samples

Email classification:

+ Num. train samples 400

+ Training classification accuracy: 1.000
+ Testing classification accuracy: 0.931
+ Num. support vectors: 104

Weights
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Linear SVM - Spam/Non-Spam
Exercise 5: Learn and test SVMs

Using the e-mail spam dataset, learn a linear SVM classifier on the training set and
apply it on the test set. Repeat for different sizes of the training data: 50, 100, 400
and 702 samples.

Solution: 702 samples

Training with 702 samples
Email classification:

+ Num. train samples 702

+ Training classification accuracy: 1.000
+ Testing classification accuracy: 0.950
+ Num. support vectors: 145

Weights



Linear SVM

Exercise 5: Learn and test SVMs

Q2: Describe how the classification accuracies (train and test) evolve with the number of training
samples. Explain what you observe with the training accuracy, and the test accuracy.

m the training accuracy is always 1, showing that in this high-dimensional space (2500), it
always possible to obtain a perfect training accuracy (when the number of samples is lower
than the number of dimensions).

m the test accuracy reaches 0.95/0.96, showing that there exist good linear classifier to
separate the data.

m the testing accuracy is relatively small when working with 50 documents only, but quickly
reaches a good score as well, demonstrating the capacity of the SVM (and of the margin
concept) to provide good solutions.

m accordingly, the number of support vector increases



Linear SVM

Exercise 5: Learn and test SVMs

Q3: How do the learned weight evolve? Do you observe any specific pattern as the number
document is changing?

m the weights are more variable across features for N=50 samples.

m for larger N, the weights are larger for features with a lower index, and we do observe that for
some index, the weight remain more or less the same, showing their importance for
spam/non-spam classification

Exercise 5: Learn and test SVMs

Q4: What is the proportion of support vectors compared to the number of training samples, as N
increases? Are these sparse solutions (i.e. usually, we would assume that sparse is achieved when
less than 10% of the samples are used)? Can you explain why it is like this?

These solutions are not that sparse, essentially due to the number of training samples versus the
feature dimension. Nevertheless, we observe that the sparsity is improving (20% for N = 700, vs
66% for N = 50).



Linear SVM

Q5: For the same set of 100 documents, report the training and classification accuracy for C=1,
10 or 100. How do the test accuracy and learned weights evolve? What can you notice? Explain
the results.

Solution: for C=1,10,100, we obtain:

Training with 100 samples

Email classification:

+ Num. train samples 100

+ Training classification accuracy: 1.000
+ Testing classification accuracy: 0.962
+ Num. support vectors: 51

04

Weights

The results are the same for all C values. Indeed, for the same set of samples, there are no errors
(accuracy of 1), and no samples within the margin. Thus the optimal margin has been found, and
nothing will change.



Linear SVM

Poll - Which of the following options are true?

m 1) The SVM is not able to classify properly both classes.

m 2) When C is large there is no tolerance for errors, so it is automatic that the
classification is perfect on the training data.

m 3) The fact that the solutions are the same for different values of C is only true
because the initialization of the SVM optimization algorithm is the same.

m 4) The fact that when C=1 the classification is already perfect on the training
data indicate that we have found the optimal margin (the error term linked to C
is 0). So, further increasing C will not further affect the solution (and decision
boundary).



Linear SVM

SVM on Spam/Non-Spam

m 1) The SVM is not able to classify properly both classes.

m 2) When C is large there is no tolerance for errors, so it is automatic that the classification is
perfect on the training data.

m 3) The fact that the solutions are the same for different values of C is only true because the
initialization of the SVM optimization algorithm is the same.

m 4) The fact that when C=1 the classification is alread perfect on the training data indicate
that we have found the optimal margin (the error term linked to C is 0). So, further
increasing C will not further affect the solution (and decision boundary).

Solution

1) True, since the test results are not perfect (but this depends on how we feel about ’'properly’).



Linear SVM

SVM on Spam/Non-Spam

m 1) The SVM is not able to classify properly both classes.

m 2) When C is large there is no tolerance for errors, so it is automatic that the classification is
perfect on the training data.

m 3) The fact that the solutions are the same for different values of C is only true because the
initialization of the SVM optimization algorithm is the same.

m 4) The fact that when C=1 the classification is alread perfect on the training data indicate
that we have found the optimal margin (the error term linked to C is 0). So, further
increasing C will not further affect the solution (and decision boundary).

Solution
1) True, since the test results are not perfect (but this depends on how we feel about ’'properly’).

2) False, as there is no guarantee in general that we can obtain a perfect training score, even for
very large C.



Linear SVM

SVM on Spam/Non-Spam

m 1) The SVM is not able to classify properly both classes.

m 2) When C is large there is no tolerance for errors, so it is automatic that the classification is
perfect on the training data.

m 3) The fact that the solutions are the same for different values of C is only true because the
initialization of the SVM optimization algorithm is the same.

m 4) The fact that when C=1 the classification is alread perfect on the training data indicate
that we have found the optimal margin (the error term linked to C is 0). So, further
increasing C will not further affect the solution (and decision boundary).

Solution
1) True, since the test results are not perfect (but this depends on how we feel about ’'properly’).

2) False, as there is no guarantee in general that we can obtain a perfect training score, even for
very large C.

3) False, as the SVM solution is obtained by solving a quadratic programming problem which has a
unique solution, so it does not depend on any initilization.



Linear SVM

e Primal problem

arg miny, (%HW 12+ CZZ]\LI 5,') subject to  ©

& >0

N
. 1
arg min <§”WH2 +C Z max(0,1 — t,vy(xi)))

i=1

Exercise 5: Learn and test SVMs

m 4) The fact that when C=1 the classification is alread perfect on the training data indicate
that we have found the optimal margin (the error term linked to C is 0). So, further
increasing C will not further affect the solution (and decision boundary).

4) False. The fact that the classification is perfect only indicates that &; < 1 for all points. Hence
the optimization of the margin may still be improved (in the sense of increasing it), by decreasing

C (since decreasing C will reduce the cost or margin violations and thus indirectly put more weight
on increasing the margin term in the overal optimization).

Since we do not observe any change in the margin, this actually implies that for C = 1, there are
no errors (accuracy of 1), and no samples within the margin. Thus the optimal margin has been
found, and nothing will change.



Linear SVM

Exercise 6: Interpretation

Q1: When using all documents for training: What can you say about the weights of the words?
Does it make sense? Which words influence more the class "spam”? Which words influence more

the class "non spam”?

m The words more related to 'selling’ are appearing as an indicator of spam (call, click, website
to visit, http, extension com, free) or adult content (adult, live ?)

m Those related to normal content (i.e. dataset collected on a university campus) like (thanks,
edu extension, language, linguistic, linguist, university) are pushing toward the non-spam class



Support Vector Machines (SVM) - Part 2



SVM with RBF kernel

Exercise 2: 2D Dataset

A two-dimensional dataset is loaded and visualized.
Q1: Do you think that the classes are easily separable?

Solution: several answers possible
Dataset Samples X

06

04

x2

04

08

05 04 02 00 02

m no: there is apparently a linear separation, but many datapoints from both classes are very
close to each other, so in any case, there will be classification errors, including the points
which fall on the other side of the potential linear decision boundary (which can be due to
the expected noise associated to each class, and thus those points are points drawn from the
class distribution).

m yes, it it seems that there is a linear separation between the two classes, although some
points will probably be misclassified at training time, if we select the right set of parameters.
Otherwise, this may lead to overfitting.



SVM with RBF kernel

Exercise 3: Hyperparameters values

Try with C = 1,1000 and v = 1, 10, 100, 1000. Visualize the learned models with
different combinations of hyperparameter values. Remember that the kernel indicates
how close are two data points and whould be considered as 'neighboors’ (and thus be
labeled similarily).

Have a look at the boundary decision functions, training accuracy, as well as at the
number of support vectors in the different configurations.

Q1: Which set of parameters sounds problematic or good here (in particular think of
underfitting and overfitting)? Explain why in each case (i.e. why the specific set of C
and v values have these effects).
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SVM with RBF kernel -
Exercise 3: Hyperparameters values

Solution: C=1and v =1

Dataset Samples
06 /

Training classification accuracy: 0.919
Num. support vectors: 94
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SVM with RBF kernel -
Exercise 3: Hyperparameters values

Solution: C =1 and v = 10

Dataset Samples

06

04

02

00

x2
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-0.6

Training classification accuracy: 0.934
Num. support vectors: 73
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SVM with RBF kernel -
Exercise 3: Hyperparameters values

Solution: C =1 and v = 100

Dataset Samples

Training classification accuracy: 0.943
Num. support vectors: 126
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SVM with RBF kernel -
Exercise 3: Hyperparameters values

Solution: C =1 and v = 1000

Dataset Samples

Training classification accuracy: 1.0
Num. support vectors: 208



SVM with RBF kernel

Exercise 3: Hyperparameters values

Q1: Which set of parameters sounds problematic or good here (in particular think of
underfitting and overfitting)? Explain why in each case (i.e. why the specific set of C
and v values have these effects).

Answer: C =1
For C = 1, which does not penalize much the errors:
= number of support vectors: no systematic trend (values = 94, 73, 126, 208 as
gamma increases). Nevertheless, as a ternd, when gamma is large, there are often
more support vectors
m accuracy increases as gamma increase (0.919, 0.934, 0.943, 1). However, we
observe underfitting (gamma=1) clear overfitting for gamma = 1000 (small
overfitting for gamma=100).

m best: gamma=10: follows almost the linear trend
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SVM with RBF kernel -
Exercise 3: Hyperparameters values

Solution: C = 1000 and v =1

Dataset Samples

06

04

02

00

x2
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04

-0.6

-0.6

Training classification accuracy: 0.934
Num. support vectors: 47
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SVM with RBF kernel -
Exercise 3: Hyperparameters values

Solution: C = 1000 and v = 10

Dataset Samples
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-0.6

Train classification accuracy: 0.934
Num. support vectors: 47
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SVM with RBF kernel -
Exercise 3: Hyperparameters values

Solution: C = 1000 and v = 100

Dataset Samples

Training classification accuracy: 1.0
Num. support vectors: 81



SVM with RBF kernel

Exercise 3: Hyperparameters values

Solution: C = 1000 and ~ = 1000

Dataset Samples

06

04

02

00

x2

02

04

-06

Train classification accuracy: 1.0
Num. support vectors: 208



SVM with RBF kernel

Exercise 3: Hyperparameters values

Q1: Which set of parameters sounds problematic or good here (in particular think of
underfitting and overfitting)? Explain why in each case (i.e. why the specific set of C
and v values have these effects).

Answer: C = 1000
For C = 1000:

m for gamma =1 : good results overall: (47 support vectors, accuracy = 0.934).
The decision function is quite regular and smooth, as it integrates information
coming from further points (compared to C=1, gamma=10)

m gamma = 10: results are ok (47 support vectors, accuracy = 0.934), close to
overfitting, although decision boudary does not change much compared to
gamma=1

®m gamma = 100. overfitting (81 support vectors, accuracy = 1) - compared to
C =1, we see thar more penalization of errors lead to higher training accuracy.

m gamma = 1000: overfitting, results vers similar to gamma=1000 and C = 1.
Everypoint becomes a support vector (accuracy = 1, #support vectors = 208).
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SVM with RBF kernel -

Q1: Which set of parameters sounds good here?

Answer: C =1 and v = 10 looks ok.

The resulting decision boundary is smooth and it is a good compromise between large margin and
some margin violations. It is more convenient for generalization.

Dataset Samples
06 A~ [

-02

-04

-06

-06

Train classification accuracy: 0.934
Num. support vectors: 73



SVM with RBF kernel

Q1: Which set of parameters sounds good here? Explain why?

Solution: C = 1000 and v =1

The resulting decision boundary is smooth and it is a good compromise between large margin and

some margin violations. It is more convenient for generalization.
Dataset Samples

-02

-04

-06

-06

Train classification accuracy: 0.934
Num. support vectors: 47




SVM with RBF kernel

Exercise 4: Cross-validation

The goal is to perform cross-validation to find the best hyperparameters (C and ). The dataset
was split into three subsets for cross-validation. Then, a search grid is implemented to find the
hyperparameters that achieve the best classification accuracy (on test data).

Q1: Search for the best hyperparameters. Explain in a few words the process of 3-fold
cross-validation that is applied on this example

Cross-validation is a technique to estimate the model (hyper)-parameters on limited data and
avoid underfitting of overfitting. The data are split in k-folds, and, iteratively, one fold is used for
testing and the rest k-1 folds are used for training (with different hyper-parameters). The
hyper-parameters leading to the best (test) results on the aggregation of the different iterations
are used as selected values.



SVM with RBF kernel

Exercise 4: Cross-validation

The goal is to perform cross-validation to find the best hyperparameters (C and ). The dataset
was split into three subsets for cross-validation. Then, a search grid is implemented to find the
hyperparameters that achieve the best classification accuracy (on test data).

Q2: Report the best set of parameters (Cp, and ~y,) that has been returned by the grid search.
Given Cp, what is the range of v, values that are providing close results (e.g. the best results -
0.02)? What if we fix v instead? What matters most in this case? Observing the distribution of
data, what give you a hint on how to select the v parameter?

m Best obtained parameters: C, = 5 and 7, = 5, leading to the maximum cross-validation
accuracy: 0.934.

m For C, =5 fixed, we get a range of «v from 5 to 25. For «, = 5 fixed, we get a range of C
from 5 to 145. Therefore, the hyper-parameter «y is more important, which is to be expected
as it provides the scale.

m In general, v should be chosen by considering the density of the data points, or, in other
words, the distance between the points in the dataset (e.g. average of the 5 closest distance
between points). This is similar to the spectral clustering problem, which clusters points
based on connectivity.



SVM with RBF kernel

Exercise 4: Cross-validation

Q3: Compute again the solution of exercise 2 with the obtained parameters. What can you
conclude.

Dataset Samples

-02

-04

-06

-06

The classification accuracy is 0.938; the number of support vectors is 50

Visually, the obtained result seems a good compromise between smoothness/margin size, and
margin violations.
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